If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+100=163
We move all terms to the left:
3x^2+100-(163)=0
We add all the numbers together, and all the variables
3x^2-63=0
a = 3; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·3·(-63)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*3}=\frac{0-6\sqrt{21}}{6} =-\frac{6\sqrt{21}}{6} =-\sqrt{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*3}=\frac{0+6\sqrt{21}}{6} =\frac{6\sqrt{21}}{6} =\sqrt{21} $
| 3t^-7=3(4)^-7 | | x=21x+6 | | (3x)/(4)=(6)/(7) | | -0.55x+0.25x=8.1 | | –54=–6(h+58) | | 99=9(q+4) | | 7^x+1=-33 | | 7+4;n=5.4 | | 2x+6=38,x | | 28/4=t/7 | | q÷6+9=21 | | (1)/(2)x-37=-84 | | 5x+12=2x-3. | | 7y-9=2y+9 | | x/2365=823 | | –b6+8=9 | | (2^x)=1.36 | | (x-½)(x⅓)=0 | | –60=–5+–5r | | –6+10f=9f | | 6x+32=40 | | 7.75t+4=16.5t+7 | | 2.145=7.567+y | | Dx10=250 | | 5a=225/16 | | 0=-2r^2+6r | | c-4/c-2=c-2/c+2-1/2-c | | Y=-1000x-20 | | c/–4=–9 | | 216^(x-2)=36^(2x) | | -7=a(-2)-3 | | Y=1000x+20 |